资源类型

期刊论文 415

会议视频 3

年份

2024 1

2023 21

2022 51

2021 43

2020 34

2019 36

2018 12

2017 9

2016 16

2015 8

2014 16

2013 28

2012 10

2011 18

2010 13

2009 24

2008 17

2007 17

2006 5

2005 5

展开 ︾

关键词

混凝土 17

三峡工程 7

三峡升船机 4

混凝土坝 3

混凝土浇筑 3

混凝土面板堆石坝 3

三点弯曲梁 2

升船机 2

实时监控 2

承载力 2

收缩 2

施工技术 2

玻璃钢 2

碾压混凝土坝 2

组合梁 2

700 m跨径级别 1

ANSYS 1

D区 1

FRP 聚合物 1

展开 ︾

检索范围:

排序: 展示方式:

Influence of recycled polyethylene terephthalate fibres on plastic shrinkage and mechanical properties of concrete

Necat ÖZAŞIK; Özgür EREN

《结构与土木工程前沿(英文)》 2022年 第16卷 第6期   页码 792-802 doi: 10.1007/s11709-022-0849-6

摘要: Polyethylene terephthalate bottles production has drastically increased year after year due to high versatility of polyethylene terephthalate plastics and considerable consumption of beverages. In tandem with that increase, the major concern of society has been the improper disposal of this non-biodegradable material to the environment. To deal with this concern, recycled polyethylene terephthalate bottles were incorporated in concrete as fibre reinforcements in this study. The objective of this research is to evaluate the mechanical properties of recycled polyethylene terephthalate fibre reinforced concrete (RPFRC) in comparison with control concrete without fibres. polyethylene terephthalate fibres with three different diameters (0.45, 0.65, and 1.0 mm) and two lengths (20 and 30 mm) were added at various proportions (0.5%, 1.0%, 1.5% and 2.0%) by volume of concrete in order to determine the effect of fibres initially on compressive, flexural and splitting tensile strengths of concrete. The results revealed that none of the fibres have detrimental effects up to 1% volume fraction, however further addition caused slight reductions on mechanical properties in some conditions. Plastic shrinkage resistance and impact resistance tests were also performed according to related standards. Polyethylene terephthalate fibres were observed to have marked improvements on those properties. Such a good performance could be attributed primarily to the bridging effect of fibres.

关键词: recycled PET     fibre-reinforced concrete     mechanical properties     plastic shrinkage     impact energy    

Numerical modelling of reinforced concrete flexural members strengthened using textile reinforced mortars

《结构与土木工程前沿(英文)》 2023年 第17卷 第4期   页码 649-668 doi: 10.1007/s11709-023-0919-4

摘要: Externally bonded (EB) and near-surface mounted (NSM) bonding are two widely adopted and researched strengthening methods for reinforced-concrete structures. EB composite substrates are easy to reach and repair using appropriate surface treatments, whereas NSM techniques can be easily applied to the soffit and concrete member sides. The EB bonded fiber-reinforced polymer (FRP) technique has a significant drawback: combustibility, which calls for external protective agents, and textile reinforced mortar (TRM), a class of EB composites that is non-combustible and provides a similar functionality to any EB FRP-strengthened substrate. This study employs a finite element analysis technique to investigate the failing failure of carbon textile reinforced mortar (CTRM)-strengthened reinforced concrete beams. The principal objective of this numerical study was to develop a finite element model and validate a set of experimental data in existing literature. A set of seven beams was modelled and calibrated to obtain concrete damage plasticity (CDP) parameters. The predicted results, which were in the form of load versus deflection, load versus rebar strain, tensile damage, and compressive damage patterns, were in good agreement with the experimental data. Moreover, a parametric study was conducted to verify the applicability of the numerical model and study various influencing factors such as the concrete strength, internal reinforcement, textile roving spacing, and externally-applied load span. The ultimate load and deflection of the predicted finite element results had a coefficient of variation (COV) of 6.02% and 5.7%, respectively. A strain-based numerical comparison with known methods was then conducted to investigate the debonding mechanism. The developed finite element model can be applied and tailored further to explore similar TRM-strengthened beams undergoing debonding, and the preventive measures can be sought to avoid premature debonding.

关键词: fiber reinforced polymer     textile reinforced mortar     finite element analysis     concrete damage plasticity     calibration and validation     parametric study    

Experimental study on shear behavior of reinforced concrete beams with web horizontal reinforcement

Dong XU,Yu ZHAO,Chao LIU

《结构与土木工程前沿(英文)》 2014年 第8卷 第4期   页码 325-336 doi: 10.1007/s11709-014-0080-1

摘要: In determining the shear capacity of reinforced concrete beams, current codes do not provide any calculation method to evaluate the influence of web horizontal reinforcement, although they exist as structural reinforcements (or skin reinforcement). The present paper comprises results of 11 reinforced concrete beams in an effort to investigate the influence of web horizontal reinforcement on the shear behavior of reinforced concrete beams. The primary design variables are the shear-span-depth ratio, different reinforcement ratio of stirrups and web horizontal reinforcement. Influence of web horizontal reinforcement on crack patterns and failure mode was studied. It was found that web horizontal reinforcement can increase the shear capacity of the beams and restrain growth of inclined cracks effectively. Test results are very valuable, as very few references of shear tests can be found focusing on the effect of web horizontal reinforcement on the shear capacity of the beams.

关键词: reinforced concrete beam     shear strength     web horizontal reinforcement     experiments    

Studies of fiber-matrix debonding

Navneet DRONAMRAJU,Johannes SOLASS,Jörg HILDEBRAND

《结构与土木工程前沿(英文)》 2015年 第9卷 第4期   页码 448-456 doi: 10.1007/s11709-015-0316-8

摘要: In this paper, the debonding of a single fiber-matrix system of carbon fiber reinforced composite (CFRP) AS4/Epson 828 material is studied using Cohesive Zone Model (CZM). The effect of parameters namely, maximum tangential contact stress, tangential slip distance and artificial damping coefficient on the debonding length at the interface of the fiber-matrix is analyzed. Contact elements used in the CZM are coupled based on a bilinear stress-strain curve. Load is applied on the matrix, tangential to the interface. Hence, debonding is observed primarily in Mode II. Wide range of values are considered to study the inter-dependency of the parameters and its effect on debonding length. Out of the three parameters mentioned, artificial damping coefficient and tangential slip distance significantly affect debonding length. A thorough investigation is recommended for case wise interface debonding analysis, to estimate the optimal parametric values while using CZM.

关键词: single fibre     cohesive zone model     interface debonding     carbon fiber reinforced composite (CFRP)    

Experimental investigation on concrete overlaid with textile reinforced mortar: Influences of mix, temperature

《结构与土木工程前沿(英文)》 2023年 第17卷 第2期   页码 271-283 doi: 10.1007/s11709-022-0896-z

摘要: Textile reinforced mortar is widely used as an overlay for the repair, rehabilitation, and retrofitting of concrete structures. Recently, textile reinforced concrete has been identified as a suitable lining material for improving the durability of existing concrete structures. In this study, we developed a textile-reinforced mortar mix using river sand and evaluated the different characteristics of the textile-reinforced mortar under various exposure conditions. Studies were carried out in two phases. In the first phase, the pullout strength, temperature resistance, water absorption, and compressive and bending strength values of three different textile-reinforced mortar mixes with a single type of textile reinforcement were investigated. In the second phase, the chemical resistance of the mix that showed the best performance in the abovementioned tests was examined for use as an overlay for a concrete substrate. Investigations were performed on three different thicknesses of the textile reinforced mortar overlaid on concrete specimens that were subjected to acidic and alkaline environments. The flexural responses and degradations of the textile reinforced mortar overlaid specimens were examined by performing bending tests. The experimental findings indicated the feasibility of using textile reinforced mortar as an overlay for durable concrete construction practices.

关键词: textile reinforced mortar     bending tests     acid and alkaline environment     concrete overlay    

Axial compression tests and numerical simulation of steel reinforced recycled concrete short columnsconfined by carbon fiber reinforced plastics strips

Hui MA; Fangda LIU; Yanan WU; Xin A; Yanli ZHAO

《结构与土木工程前沿(英文)》 2022年 第16卷 第7期   页码 817-842 doi: 10.1007/s11709-022-0844-y

摘要: To research the axial compression behavior of steel reinforced recycled concrete (SRRC) short columns confined by carbon fiber reinforced plastics (CFRP) strips, nine scaled specimens of SRRC short columns were fabricated and tested under axial compression loading. Subsequently, the failure process and failure modes were observed, and load-displacement curves as well as the strain of various materials were analyzed. The effects on the substitution percentage of recycled coarse aggregate (RCA), width of CFRP strips, spacing of CFRP strips and strength of recycled aggregate concrete (RAC) on the axial compression properties of columns were also analyzed in the experimental investigation. Furthermore, the finite element model of columns which can consider the adverse influence of RCA and the constraint effect of CFRP strips was founded by ABAQUS software and the nonlinear parameter analysis of columns was also implemented in this study. The results show that the first to reach the yield state was the profile steel in the columns, then the longitudinal rebars and stirrups yielded successively, and finally RAC was crushed as well as the CFRP strips was also broken. The replacement rate of RCA has little effect on the columns, and with the substitution rate of RCA from 0 to 100%, the bearing capacity of columns decreased by only 4.8%. Increasing the CFRP strips width or decreasing the CFRP strips spacing could enhance the axial bearing capacity of columns, the maximum increase was 10.5% or 11.4%, and the ductility of columns was significantly enhanced. Obviously, CFRP strips are conducive to enhance the axial bearing capacity and deformation capacity of columns. On this basis, considering the restraint effect of CFRP strips and the adverse effects of RCA, the revised formulas for calculating the axial bearing capacity of SRRC short columns confined by CFRP strips were proposed.

关键词: steel reinforced recycled concrete     CFRP strips     short columns     axial compression behavior     recycled aggregate concrete    

Investigation on modeling parameters of concrete beams reinforced with basalt FRP bars

Jordan CARTER, Aikaterini S. GENIKOMSOU

《结构与土木工程前沿(英文)》 2019年 第13卷 第6期   页码 1520-1530 doi: 10.1007/s11709-019-0580-0

摘要: Fiber-reinforced polymer (FRP) bars are widely used as internal reinforcement replacing the conventional steel bars to prevent from corrosion. Among the different types of FRP bars, basalt FRP (BFRP) bars have been used in different structural applications and, herein, three already tested concrete beams reinforced with BFRP bars are analyzed using three-dimensional (3-D) finite element analysis (FEA). The beams were tested in four-point bending. In the FEA the behavior of concrete is simulated using the “Concrete-Damaged Plasticity” model offered in ABAQUS software. The research presented here presents a calibrated model for nonlinear FEA of BFRP concrete beams to predict their response considering both the accuracy and the computational efficiency. The calibration process showed that the concrete model should be regularized using a mesh-dependent characteristic length and material-dependent post-yield fracture and crushing energies to provide accurate mesh-size independent results. FEA results were compared to the test results with regard to failure load and crack patterns. Both test the results and the numerical results were compared to the design predictions of ACI 440.1R-15 and CSA S806-12, where CSA S806-12 seems to overestimate the shear strength for two beams.

关键词: basalt Fiber-reinforced polymer bars     reinforced concrete beams     finite element analysis     damaged plasticity model     design codes    

Predetermination of potential plastic hinges on reinforced concrete frames using GFRP reinforcement

Dominik KUERES; Dritan TOPUZI; Maria Anna POLAK

《结构与土木工程前沿(英文)》 2022年 第16卷 第5期   页码 624-637 doi: 10.1007/s11709-022-0832-2

摘要: In the past, glass fiber-reinforced polymer (GFRP)-reinforcement has been successfully applied in reinforced concrete (RC) structures where corrosion resistance, electromagnetic neutrality, or cuttability were required. Previous investigations suggest that the application of GFRP in RC structures could be advantageous in areas with seismic activity due to their high deformability and strength. However, especially the low modulus of elasticity of GFRP limited its wide application as GFRP-reinforced members usually exhibit considerably larger deformations under service loads than comparable steel-reinforced elements. To overcome the aforementioned issues, the combination of steel and GFRP reinforcement in hybrid RC sections has been investigated in the past. Based on this idea, this paper presents a novel concept for the predetermination of potential plastic hinges in RC frames using GFRP reinforcement. To analyze the efficiency of the concept, nonlinear finite element simulations were performed. The results underscore the high efficiency of hybrid steel-GFRP RC sections for predetermining potential plastic hinges on RC frames. The results also indicate that the overall seismic behavior of RC structures could be improved by means of GFRP as both the column base shear force during the seismic activity as well as the plastic deformations after the earthquake were considerably less pronounced than in the steel-reinforced reference structure.

关键词: glass fiber-reinforced polymer     GFRP     hybrid section     plastic hinge     seismic design     reinforced concrete    

Slender reinforced concrete shear walls with high-strength concrete boundary elements

《结构与土木工程前沿(英文)》 2023年 第17卷 第1期   页码 138-151 doi: 10.1007/s11709-022-0897-y

摘要: Reinforced concrete structural walls are commonly used for resisting lateral forces in buildings. Owing to the advancements in the field of concrete materials over the past few decades, concrete mixes of high compressive strength, commonly referred to as high-strength concrete (HSC), have been developed. In this study, the effects of strategic placement of HSC on the performance of slender walls were examined. The finite-element model of a conventional normal-strength concrete (NSC) prototype wall was validated using test data available in extant studies. HSC was incorporated in the boundary elements of the wall to compare its performance with that of the conventional wall at different axial loads. Potential reductions in the reinforcement area and size of the boundary elements were investigated. The HSC wall exhibited improved strength and stiffness, and thereby, allowed reduction in the longitudinal reinforcement area and size of the boundary elements for the same strength of the conventional wall. Cold joints resulting from dissimilar concrete pours in the web and boundary elements of the HSC wall were modeled and their impact on behavior of the wall was examined.

关键词: slender walls     high-strength concrete     rectangular and barbell-shaped walls     cold joints    

Punching of reinforced concrete slab without shear reinforcement: Standard models and new proposal

Luisa PANI, Flavio STOCHINO

《结构与土木工程前沿(英文)》 2020年 第14卷 第5期   页码 1196-1214 doi: 10.1007/s11709-020-0662-z

摘要: Reinforced concrete (RC) slabs are characterized by reduced construction time, versatility, and easier space partitioning. Their structural behavior is not straightforward and, specifically, punching shear strength is a current research topic. In this study an experimental database of 113 RC slabs without shear reinforcement under punching loads was compiled using data available in the literature. A sensitivity analysis of the parameters involved in the punching shear strength assessment was conducted, which highlighted the importance of the flexural reinforcement that are not typically considered for punching shear strength. After a discussion of the current international standards, a new proposed model for punching shear strength and rotation of RC slabs without shear reinforcement was discussed. It was based on a simplified load-rotation curve and new failure criteria that takes into account the flexural reinforcement effects. This experimental database was used to validate the approaches of the current international standards as well as the new proposed model. The latter proved to be a potentially useful design tool.

关键词: punching shear strength     reinforced concrete     slabs     reinforcement ratio    

Strengthening of reinforced concrete beams using fiber-reinforced cementitious matrix systems fabricated

《结构与土木工程前沿(英文)》   页码 1100-1116 doi: 10.1007/s11709-023-0967-9

摘要: The performance of a new fiber-reinforced cementitious matrix (FRCM) system developed using custom-designed mortar and fabrics is investigated in this study. The behavior of this system is evaluated in terms of both the flexural and shear strengthening of reinforced concrete beams. Eight beams are designed to assess the effectiveness of the FRCM system in terms of flexural strengthening, and four specimens are designed to investigate their shear behavior. The parameters investigated for flexural strengthening are the number of layers, span/depth ratio, and the strengthening method. Unlike previous studies, custom fabrics with similar axial stiffness are used in all strengthening methods in this study. In the shear-strengthened specimens, the effects of the span/depth ratio and strengthening system type (fiber-reinforced polymer (FRP) or FRCM) are investigated. The proposed FRCM system exhibits desirable flexural and shear strengthening for enhancing the load capacity, provides sufficient bonding with the substrate, and prevents premature failure modes. Considering the similar axial stiffness of fabrics used in both FRCM and FRP systems and the higher load capacity of specimens strengthened by the former, cement-based mortar performs better than epoxy.

关键词: fiber-reinforced cementitious matrix     flexural strengthening     shear strengthening     carbon fiber-reinforced polymer     shear span    

Fatigue shear performance of concrete beams reinforced with hybrid (glass-fiber-reinforced polymer+ steel

《结构与土木工程前沿(英文)》 2021年 第15卷 第3期   页码 576-594 doi: 10.1007/s11709-021-0728-6

摘要: Reinforced concrete beams consisting of both steel and glass-fiber-reinforced polymer rebars exhibit excellent strength, serviceability, and durability. However, the fatigue shear performance of such beams is unclear. Therefore, beams with hybrid longitudinal bars and hybrid stirrups were designed, and fatigue shear tests were performed. For specimens that failed by fatigue shear, all the glass-fiber-reinforced polymer stirrups and some steel stirrups fractured at the critical diagonal crack. For the specimen that failed by the static test after 8 million fatigue cycles, the static capacity after fatigue did not significantly decrease compared with the calculated value. The initial fatigue level has a greater influence on the crack development and fatigue life than the fatigue level in the later phase. The fatigue strength of the glass-fiber-reinforced polymer stirrups in the specimens was considerably lower than that of the axial tension tests on the glass-fiber-reinforced polymer bar in air and beam-hinge tests on the glass-fiber-reinforced polymer bar, and the failure modes were different. Glass-fiber-reinforced polymer stirrups were subjected to fatigue tension and shear, and failed owing to shear.

关键词: fatigue     shear     hybrid stirrups     hybrid reinforcement     fiber-reinforced polymer    

Experimental flexural behavior of SMA-FRP reinforced concrete beam

Adeel ZAFAR, Bassem ANDRAWES

《结构与土木工程前沿(英文)》 2013年 第7卷 第4期   页码 341-355 doi: 10.1007/s11709-013-0221-y

摘要: The most critical drawback in currently used steel reinforcement in reinforced concrete (RC) structures is susceptibility to accumulation of plastic deformation under excessive loads. Many concrete structures due to damaged (yielded) steel reinforcement have undergone costly repairs and replacements. This research presents a new type of shape memory alloy (SMA)-based composite reinforcement with ability to withstand high elongation while exhibiting pseudo-elastic behavior. In this study, small diameter SMA wires are embedded in thermoset resin matrix with or without additional glass fibers to develop composite reinforcement. Manufacturing technique of new proposed composite is validated using microscopy images. The proposed SMA-FRP composite square rebars are first fabricated and then embedded in small scale concrete T-beam. 3-point bending test is conducted on manufactured RC beam using a cyclic displacement controlled regime until failure. It is found that the SMA-FRP composite reinforcement is able to enhance the performance of concrete member by providing re-centering and crack closing capability.

关键词: re-centering     shape memory alloys     concrete     composite     fiber reinforced polymer     scanning electron microscopy    

Critical review of recent development in fiber reinforced adobe bricks for sustainable construction

Mahgoub M. SALIH, Adelaja I. OSOFERO, Mohammed S. IMBABI

《结构与土木工程前沿(英文)》 2020年 第14卷 第4期   页码 839-854 doi: 10.1007/s11709-020-0630-7

摘要: This paper presents a state-of-the-art review of research on the utilization of fibers (predominantly derived from waste materials) as reinforcement in adobe brick production. Recycling of these wastes provides sustainable construction materials and helps to protect the environment. Specimen preparation and test procedures are outlined. The effects of addition of these wastes on the physical and mechanical properties of adobe bricks as presented in the literature, are investigated. The main results for each additive are presented and discussed. It is concluded that improved adobe brick properties can be expected with the addition of combination of waste additives. The use of waste materials in the construction industry is generally of interest and useful for engineers and designers seeking sustainable solutions in construction. It is also of interest to researchers actively seeking to develop methodical approaches to quantifying, optimising and testing the performance in use of such waste material additives.

关键词: adobe bricks     fibre reinforced bricks     green     sustainable building material     physical and mechanical properties    

Experimental and modeling studies on installation of arc sprayed Zn anodes for protection of reinforcedconcrete structures

Xianming SHI

《结构与土木工程前沿(英文)》 2016年 第10卷 第1期   页码 1-11 doi: 10.1007/s11709-016-0312-7

摘要: Arc sprayed zinc (Zn) anode on concrete surfaces has been an emerging technology for protecting reinforced concrete structures from rebar corrosion in coastal environments. Many cathodic protection (CP) systems with arc sprayed Zn anodes will reach or exceed their design life in the near future and thus may function improperly or insufficiently, making it necessary to replace the aged anodes. However, prior to this study, little was known about the most effective profile for the concrete surface, for either new concrete or old concrete with existing Zn anodes removed. This work develops criteria to properly prepare the concrete surface before the application of new Zn anode. Experimental studies were conducted both in the laboratory and for a field structure in Oregon. Artificial neural network was used to achieve better understanding of the complex cause-and-effect relationships inherent in the Zn-mortar or Zn–concrete systems and was successful in finding meaningful, logical results from the bond strength data. The goal is to achieve strong initial bond strength of new Zn to concrete, which is essential for long-term performance of the CP system. The results from this case study suggest that it is necessary to adjust the anode removal and surface sandblasting based on the electrochemical age of the existing concrete. In all cases of sandblasting, minimize the exposure of large aggregates (e.g., those bigger than 19 mm in diameter).

关键词: arc sprayed Zn     anode replacement     reinforced concrete     bridge preservation     neural networks     surface profile    

标题 作者 时间 类型 操作

Influence of recycled polyethylene terephthalate fibres on plastic shrinkage and mechanical properties of concrete

Necat ÖZAŞIK; Özgür EREN

期刊论文

Numerical modelling of reinforced concrete flexural members strengthened using textile reinforced mortars

期刊论文

Experimental study on shear behavior of reinforced concrete beams with web horizontal reinforcement

Dong XU,Yu ZHAO,Chao LIU

期刊论文

Studies of fiber-matrix debonding

Navneet DRONAMRAJU,Johannes SOLASS,Jörg HILDEBRAND

期刊论文

Experimental investigation on concrete overlaid with textile reinforced mortar: Influences of mix, temperature

期刊论文

Axial compression tests and numerical simulation of steel reinforced recycled concrete short columnsconfined by carbon fiber reinforced plastics strips

Hui MA; Fangda LIU; Yanan WU; Xin A; Yanli ZHAO

期刊论文

Investigation on modeling parameters of concrete beams reinforced with basalt FRP bars

Jordan CARTER, Aikaterini S. GENIKOMSOU

期刊论文

Predetermination of potential plastic hinges on reinforced concrete frames using GFRP reinforcement

Dominik KUERES; Dritan TOPUZI; Maria Anna POLAK

期刊论文

Slender reinforced concrete shear walls with high-strength concrete boundary elements

期刊论文

Punching of reinforced concrete slab without shear reinforcement: Standard models and new proposal

Luisa PANI, Flavio STOCHINO

期刊论文

Strengthening of reinforced concrete beams using fiber-reinforced cementitious matrix systems fabricated

期刊论文

Fatigue shear performance of concrete beams reinforced with hybrid (glass-fiber-reinforced polymer+ steel

期刊论文

Experimental flexural behavior of SMA-FRP reinforced concrete beam

Adeel ZAFAR, Bassem ANDRAWES

期刊论文

Critical review of recent development in fiber reinforced adobe bricks for sustainable construction

Mahgoub M. SALIH, Adelaja I. OSOFERO, Mohammed S. IMBABI

期刊论文

Experimental and modeling studies on installation of arc sprayed Zn anodes for protection of reinforcedconcrete structures

Xianming SHI

期刊论文